Modeling the Role of pH on Baltic Sea Cyanobacteria

نویسندگان

  • Jana Hinners
  • Richard Hofmeister
  • Inga Hense
  • John C. Meeks
  • Robert Haselkorn
چکیده

We simulate pH-dependent growth of cyanobacteria with an ecosystem model for the central Baltic Sea. Four model components-a life cycle model of cyanobacteria, a biogeochemical model, a carbonate chemistry model and a water column model-are coupled via the framework for aquatic biogeochemical models. The coupled model is forced by the output of a regional climate model, based on the A1B emission scenario. With this coupled model, we perform simulations for the period 1968-2098. Our simulation experiments suggest that in the future, cyanobacteria growth is hardly affected by the projected pH decrease. However, in the simulation phase prior to 1980, cyanobacteria growth and N2-fixation are limited by the relatively high pH. The observed absence of cyanobacteria before the 1960s may thus be explained not only by lower eutrophication levels, but also by a higher alkalinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: Small-scale fluxes, pH, and oxygen microenvironments

Summer blooms of filamentous cyanobacteria, mainly Aphanizomenon sp. and Nodularia spumigena, are characteristic for the Baltic Sea, where they accumulate at the sea surface in calm weather. The chemical microenvironment, and thus the actual growth conditions within these cyanobacterial surface blooms of the Baltic Sea, are largely unknown. Using microsensors, it is shown that photosynthesis is...

متن کامل

Biogeochemical Control of the Coupled CO2–O2 System of the Baltic Sea: A Review of the Results of Baltic-C

Past, present, and possible future changes in the Baltic Sea acid-base and oxygen balances were studied using different numerical experiments and a catchment-sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient ...

متن کامل

Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community

Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In...

متن کامل

Nitrogen fixation by cyanobacteria stimulates production in Baltic food webs

Filamentous, nitrogen-fixing cyanobacteria form extensive summer blooms in the Baltic Sea. Their ability to fix dissolved N2 allows cyanobacteria to circumvent the general summer nitrogen limitation, while also generating a supply of novel bioavailable nitrogen for the food web. However, the fate of the nitrogen fixed by cyanobacteria remains unresolved, as does its importance for secondary pro...

متن کامل

Stimulation of nitrogen-fixing cyanobacteria in a Baltic Sea plankton community by land-derived organic matter or iron addition

In the Baltic Sea, floating blooms of nitrogen-fixing cyanobacteria occur yearly during late summer. These blooms can sometimes be limited by iron. Due to extensive foresting around the Baltic Sea, iron is entering the Baltic Sea partly bound to dissolved organic material (DOM) via rivers. An experiment was performed in 300 l laboratory mesocosms to test the hypothesis that riverine highmolecul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015